Genetic Testing: Understanding Definitions and Key Concepts

Constance K. Stein, PhD

<u>Genetics</u>: the study of heredity

M C F1 F2

Gene: A region of DNA which represents a functional unit of inheritance

Chromosome: A highly ordered structure composed of DNA and proteins which carries the genetic information

Chromosomal Basis Officersity Inheritance

19

20

Metaphase

	Contraction of the second	Constanting of the second			Charlenson (Charlenson)	Grappin(h) 202009-00
1	2	3			4	5
Contractor Contractor	(Strand		and the second s	Supple		analasis analasis
6	7	8	9	10	11	12
13	14	15		16	17	18
88	23			ਲੇ ਕੇ	ð 8	lilo an

Karyotype

21

22

х

Y

Mutation

A permanent heritable change in the sequence of genomic DNA

Can be clinically significant

Important mechanism of population variation

Negative – disease

Benign – blue vs. brown eyes

Positive – sickle cell trait and malaria

Chromosoumal materiormalities

		» } {	seeler patrice Sinne	112
1	2	3	4	5
10400 20100		166	era ses	and and and
6	7	8	9 10	11 12
284		8ee	18 E 16	55 H 55 B
13	14	15	16	17 18
888	8 8 8		K	2 i i i i i i i i i i i i i i i i i i i
19	20		21 22	X Y

Structural

Nu

Numerical

del(4)(q33)

Patterns of Inheritance

Dominant vs. Recessive

Autosomal vs. X-linked

Recessive: only expressed when 2 mutations are present

Dominant: expressed with a single mutation

 Males and females equally likely to be affected

X-linked

 males more commonly affected

 no male to male transmission

A REAL PROPERTY OF	dimension Threatmint	Part and a lot)		
1	2	3		4	I	5
)	Chapter St.	Street Street	And a second)
6	7	8	9	10	11	12
-	21	COLUMN -		2000 2000 2000	area a	
13	14	15		16	17	18
86	26		÷ 8			
	20		21	22	x	¥

WACK

19

Males and females equally likely to be affected

X-linked

males more commonly affected

• no male to male transmission

Rective

19

	The second state)		
1	2	3			4	5
		Change Str.	Strates.)
6	7	8	9	10	11	12
1	21	Congress of the second		State	and and	100
13	14	15		16	17	18
88	26		5	10		and a constant
	20		21	22	x	

AutosomerupRecessive

AutosomerupRecessive

Autosomal Recessive

Blue eyes

- Sickle Cell Anemia
- Cystic fibrosis

Tay Sachs disease

<u>Autosomal Dominant</u>

- Achondroplasia
- Neurofibromatosis
- Polydactyly

X-linked Recessive

- Hemophilia A/B
- Duchenne/Becker muscular dystrophies
- Colorblindness
- Hunter syndrome

Inherited vs. Acquired Disease

Inherited gene complement – genes transmitted from one or both parents

Typically called the constitutional genome

Acquired gene complement – a subset of cells in an individual that arose by clonal propagation from a single mutation in one cell

Goals of Medical Genetics

- Understand the inheritance of genes and disease
- Investigate genes associated with disease
- Identify disease causing mutations
- Apply knowledge to treat disease

Human Genes

Human Genome Project

- Goal: Sequencing of entire human genome
- Draft copy now done
- List of bases but little functional data
- Next step figure out what it means!

67	G'	rtc(CCGI	AGCO	GAC	GGA	GGG	TGG	ACT	CGG	CCA	GAG	GTG	GC	rCG2	AGCO	CCC	CAC	CTC	CTC	GCG	CCGC	C
133	A	CCC	TAT	CC	rGA	CGG	GTG	CGA	GAG	CTG	GAC	CTG	3000	GAAC	GTC	GGG	CGG	GGI	TGA	AA	GAA	GCGGG	C
199	C'	rGd	ATG	ACCO	CGC	CGG	GAC	CCC	ACC	GCA	TCG	CCT	GA	AGAC	GCCC	CACI	CTC	CCI	GGZ	AG	GAA	GACC	A
265	T	CC	rga/	AGAC	GA	rGA	CTG	AGA	CGT	TAT	GGG	CCAC	CGCI	ACTO	STG	GTC	TGC	CTCC	CGG	GG2	AC	FGTC2	A
										M	G	H	A	L	C	v	C	s	R	G	T	v	
331	TC	ATT	GAC	CAAT	AA	GCG	TA	CCT	CTT	CGT	CCAC	GAAZ	TTC	GGG	GAZ	AGGI	GGA	TTC	AGC	TAT	GTC	GACO	
	I	I	D	N	ĸ	R	Y	L	F	v	Q	ĸ	L	G	E	G	G	F	s	¥	v	D	
397	TZ	GTO	GAG	GGC	ידידע	CA	- IGA'	rggi	ACA	ንጥጥና	ንጥእር	~ <u>~</u> ~~	יריתי	2220		ነልምር	יריירי	MCCC	יראים	1070			
	L	v	E	G	L	H	D	G	H	F	¥	A	L	K	R	I	L	C	H	E	0	0	1
162	20		1013 3	~~~~	~~~												Ξ.	-	-	-	×	*	
403	D	CAC	GAA	IGAA 17	GCC	CAL	ACG/	IGAC	GGC/	AGAC	JA'I'C	SCA1	CGC	CTC	TTC:	CAG	CAI	CCC	AAC	ATC	CT	rcgcc	
Section 1		×	-	-	-	¥	A	-	•	-	m	н	R	Ъ	F	Q	н	P	N	I	L	R	
529	TC	ATC	GCI	TAC	TCI	CTC	SAAZ	AGA/	ACGI	AGG?	rgcj	CAAC	CAJ	GAA	GCC	TGG	CTG	CTG	CTG	CCC	TTC	TTCA	A
	L	M	A	Y	S	L	K	E	R	G	A	K	Ħ	E	A	W	L	L	L	P	F	F	1
595	AG	AAA	GGI	ACA	CTC	TGO	AAT	GAC	GATZ	GAZ	AGG	CTG	AAC	GAC	CAA	GGC	AGC	TTC	CTG	ACI	GAA	GACC	-
	ĸ	ĸ	G	T	L	W	N	E	I	E	R	L	ĸ	D	Q	G	s	F	L	T	E	D	1 :
661	AG	ATC	CTG	CCG	CTO	TTO	CTO	GGJ	PATC	AGC	AGA	GGC	CTT	GAG	GCT	ጥጥል	יעט	GCC	222	CCT	יידיש	CCAC	
	0	I	L	P	L	L	L	G	I	s	R	G	L	E	A	I	H	A	R	G	v	a a	1,
727	20	200	020	-	2.20	000		12.2.0	.				~~~										1
121	H	AGG	GAC	CTG	AAC	RCCC B	ACC	AAI	ATI	-1-1C	CTI	GGT	GAI	GAG	GGG	CAG	CCA	GTT	TTA	ATG	GAC	TTGG	
	-	~	2				-	724] -	-	T.	G	ע	E	G	Q	P	v	Ŀ	м	D	L	1
793	GT	TCT	ATG	AAT	CAA	GCA	TGC	'ATI	CAA	GTG	GAG	GGC	TCT	CGC	CAG	GCA	CTA	GCT	CTT	CAG	GAC	TGGG	
	G	S	M	N	Q	A	С	I	Q	v	E	G	S	R	Q	A	L	A	L	Q	D	W	1
359	CAGCTCAGCGGTGCACCATCTCCTACCGGGCACCTGAACTTTTTTCTGTGCAAAGCCACTGTGTCA																						
	A	*	Q	R	С	T	I	8	¥	R	A	P	E	L	F	s	v	Q	s	H	с	v	2
25	TC																						
	I	D	E	R	т	D	v	W	s	L	G	C	v	L	Y	λ	M	M	F	G	E	G	2
191	CTT	TAC	CDT	איזיינ		mma	~~~	220		~~~	200	000		000									
	P	v	D	M	v	F	CAG	AAG	a	GAC	AGT C	GIG	BCC	T	GCT	GIG	CAG	AAT	JAA	CTC	AGC	ATCC	
							-		-	-			-	-	-		¥	14			Ð	+	1 4
.057	CA	CAA	AGC	ccc	AGG	CAT	TCT	TCA	.GCA	TTG	CGA	CAG	CTA	TTG	ICT	TCT	ATG	ATG	ACT	GTG	GAC	cccc	
	P	Q	8	P	ĸ	н	S	S	A	L	R	Q	L	L	S	S	M	M	T	v	D	P	2
.123	AG	CAG	AGG	CCT	CAC	ATC	CCT	GTC	CTC	CTC	AGT	CAG	FTG	GAG	GCA'	FTG	CAG	CCA	CAC	GCT	CCT	GGCC	
	Q	Q	R	P	Ħ	I	P	V	L	L	S	Q	L	E	A	L	Q	P	P	A	P	G	2
189	AG	CAC	ACC	ACCO	CAA	ATC	TGA	TCA	AAT	CAG	TGG	ACA'	TAT	IGG	GAA	GATO	JACO	TTT	JAAG	TG	CT	TTCA	
1 22	Q	H	T	т	Q	I	*																3
255	TC	CCT	CAT	rgg2	AAC	TCC	TTC	CAT	TCT	TCC	AGG	ATG	GCT	CTC	ACAG	GCTZ	GTC	GC7	AGO	AT	AGTY	GGGT	
321	CC	F TG'	TAT	ATTO	CTG	CCT	TCT	TAC	CCC	AAT	ACC'	TGG	JCA	AGGI	ACC	CTAC	GGT	IGAC	TTC	GGG	GA	AAAT	
207	CA	AAC	ACA	1000	D 7 m	200	500	AAC	CITA	COO	man	TCC			man								

Cloned Genes

Cystic fibrosis Phenylketonuria Duchenne/Becker dystrophy Prader-Willi syndrome Fragile X syndrome Hemophilia A,B Marfan syndrome

DiGeorge syndrome Familial hypercholesterolemia Retinoblastoma Medullary thyroid cancer Williams syndrome Tay Sachs disease Myotonic dystrophy Angelman syndrome Huntington disease Sickle cell anemia Osteogenesis imperfecta Hunter syndrome Familia polyposis coli **Neurofibromatosis** Breast and ovarian cancer

Genetic Testing

- Prenatal diagnosis
- Newborn screening
- Cytogenetics
- Cancer diagnosis
- Blood tests (ABO, Rh, histocompatibility)
- DNA fingerprinting

Clinical Laboratory Testing

- Cytogenetics
 - * Karyotype analysis
 - * FISH

Clinical Laboratory Testing Molecular - mutation analysis

Fragile X syndrome
Huntington disease
Duchenne muscular dystrophy
Cystic fibrosis
Sickle cell anemia
Breast cancer

Clinical Laboratory Testing Biochemical - Enzymes and proteins Tay Sachs PKU (phenylketonuria) Galactosemia

Benefits of Genetic Diagnosis

- * Confirm a diagnosis
- * Identify proper treatment
- * Provide a basis for risk assessment

* May eliminate the need for other, more invasive testing

Hereditary Hemochromatosis

- Iron storage disorder
- Incidence: 1 in 400
- Carrier frequency: 1 in 10
- Can lead to severe liver damage and death
- Other complications include diabetes, dark pigmentation of the skin, heart failure
 - Difficult to diagnosis

Hereditary Hemochromatosis

Get a direct diagnosis of disorder
Reduce need for liver biopsy
Identify at risk individuals earlier in life

Limitations of Genetic Tests

- Requires knowledge of disease specific mutations
- May not be possible to identify all mutations
- Unable to tell age of onset for late onset diseases

Molecular testing: Cystic Fibrosis

New York State Regulations

Patients must be informed of

- * the type of test being done
- ***** the limitations of the test
- ***** what benefit the results will have for them
- * What ramifications there may be with respect to insurance coverage, etc.
- Patients must sign an informed consent
- If no consent is obtained, no testing can be done

New York State Regulations

 All specimens from NYS residents must be processed by a laboratory that has been inspected and approved by the NYS Dept. of Health

 If genetic testing is performed by any laboratory that has not been approved, the results <u>cannot</u> be used for diagnosis and <u>cannot</u> be provided to the physician or the patient/subject, unless.....

New York State Regulations

"Orphan Disease Exemption"

 If testing for a genetic disorder is only done by a non-permitted laboratory, a request can be submitted to the NYS DOH to use that laboratory's results for clinical purposes

IRB Protocols

These must be written to meet:

IRB regulations

- NYS regulations
- HIPAA regulations

IRB Protocols

When do you need to be concerned about genetic regulations???

15. B. Does this study involved Genetic Testing? Yes No If yes, answer the following question:

1. Is the genetic variant inherited? Yes No

If YES (the variant IS inherited), additional consent document language is required. (See template for genetic research on the IRB web site.) **IRB**: Research subjects participating in an IRB approved research study involvoing genetic testing must be informed about:

- 1. Whether or not they or their physician will be told the test results.
- 2. The risk to insurability (the ability to get/keep insurance)
- **3.** Potential discovery of non-paternity (genetic tests may prove "dad" is not the biological father).
- **4.** If genetic counseling is provided (who pays?).
- 5. If a portion of the sample collected will be stored for future studies.

Research applications

What is genetic testing?

A study that investigates human DNA, chromosomes, genes, or gene products, including DNA profile analysis.

Research applications

Inherited vs. Acquired?

Only those disorders arising solely from a somatic mutation or mutations are exempt from current regulation.

Examples:

Leukemia, lymphoma, sporadic breast cancer, other types of sporadic solid tumors

Examples of types of studies not included

Techniques

Devices

Drug treatment protocols

What is included

Delineation of disease

- Population genetics and risk analysis
- Gene Therapy
- Pharmacogenetics
- Most family studies

Research Applications - <u>Delineation</u> of <u>Disease</u>

- Multiple members of several extended families with a known genetic disorder
 * Find the gene(s) responsible
- Multiple members of an extended family and/or multiple families with the same set of clinical abnormalities
 - * Is this a known clinical entity or can we define a new disease?
 - * What gene(s) is/are causing this to occur?

Example 1 - Drug Studies

 Random patients, same disease – OK comparison of drug effectiveness

Random patients with a known genetic disease (CF) – comparison of drug effectiveness
 OK

 Family members with and without a particular disease– comparison of drug effectiveness
 Genetics

Example 2 - Drug Studies

Random patients, same disease, one drug

Monitoring drug metabolism
 OK

 Using DNA studies to show the relationship between certain sets of genes and how the drug is metabolized.
 Requires genetic consent Pharmacokinetics vs. Pharmacogenomics

Pharmaco<u>Kinetics</u> - rate of drug metabolism

 Pharmaco<u>Genomics</u> - the relationship of genes to drug metabolism

Example 3 - Complex protocols

- Collection of blood/tissue for genetic studies is one element of protocol
- Different studies are being done at different sites.
- Local study only ascertains subjects and collects samples to be sent elsewhere.

Requires informed consent with genetics language HERE

Example 4 - Cancer

Leukemia/Lymphoma - acquired

Solid tumors

- * Treatment protocols, delineate clinical OK features for diagnosis, length of survival
- Inheritance of mutations, relationship of those mutations to severity of disease, relationship of those mutations to others that are related to disease Genetics

Example 5 - Known Genetic Disease

- Protocol is to further delineate the disorder to better understand it clinically
- Affected individuals and their unaffected family members will be recruited
- All subjects will be given a test to confirm their clinical status

Must inform subjects of the nature of the testing

Example 5 - Con't

- Protocol is to further delineate the disorder to better understand it clinically
- Affected individuals and their unaffected family members will be recruited
- All subjects will be given a test to confirm their clinical status - inform
- The results of the testing will be provided to the subjects' family physicians
- 1) Must get genetic informed consent
- 2) Must get "NYS DOH Orphan Disease Exemption"

Conclusions

- All IRB protocols must conform to IRB, NYS, and HIPAA requirements.
- Careful evaluation of the purpose of the study and the methods used must be done
- If the protocol includes genetic analysis of inherited genetic variants, subjects should be informed and appropriate language included in the IRB informed consent